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1 Introduction

This project dealt with regularization methods for ill-posed inverse problems
and the implementation of these methods for applications in atmospheric
imaging which are of interest to the US Air Force. To explain the concept
of ill-posedness, some mathematical notation and terminology is needed. In

the model equation
d=Kf+n, (1)

the f represents a desired “true” solution, and d represents measured data.
The K represents a process which transforms the true solution, while 7 repre-
sents “noise”, which is independent of the solution. The problem of retrieving
the solution f from noisy data d is called well-posed if the transformation op-
erator K is invertible, and the inverse operator K~ ! is continuous. This
means that if one could somehow make the noise term 7 “arbitrarily small”,
then K~'d would be guaranteed to be “arbitrarily close” to the desired true
solution f. A problem that is not well-posed is said to be ill-posed. To obtain
an accurate approximate solution to an ill-posed problem, one must apply
regularization. This entails the construction of a family of “approximate in-
verse operators” for the K in (1) which are “stable” and “convergent”. For
a precise mathematical definition, see [6, Ch. 3] or [25, Ch. 2].

[ll-posed inverse problems occur quite commonly in science and engineer-
ing. Examples range from biomedical and seismic imaging to groundwater
flow characterization. An ill-posed problem of great importance to the Air
Force is the reconstruction of images that have been degraded, or “blurred”,
by atmospheric turbulence effects. A mathematical model for the blurring
process is the Fredholm first kind integral operator of convolution type,

(K f)(z1,,) = //s(ml — 2%, % — zy) f(x], 7h) dz’ dzh. (2)

Figure 1 below shows simulated data obtained with this model. With this
application comes some specialized terminology. The f in (2) is called the
object, while the s is called the point spread function, abbreviated by PSF.
In atmospheric optics, the PSF has a very special form,
2
s = |]-'“1 (Aew)} , (3)

where A is the aperture function, ¢ is the phase function, or wavefront profile,
and F denotes the two dimensional Fourier transform. See [14] for details.
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Figure 1: Simulated Image Data. The upper left subplot shows the object, a
satellite in earth orbit; the upper right subplot shows the atmospheric phase, or
wavefront profile; the lower left subplot shows a conventional image (no phase
diversity) with blurring resulting from atmospheric turbulence; and the lower right
subplot shows a blurred image with phase diversity.

The wave fronts of light emanating from an idealized point source at infinity
are planar. As the light propagates through the atmosphere, these wave
fronts are distorted due to variations in the index of refraction caused by
temperature differences. The phase characterizes this wavefront distortion.
This past decade has seen the development of hardware which uses de-
formable mirrors to compensate for wavefront distortion to improve the qual-
ity of the recorded image. This hardware solution to the atmospheric blur-
ring problem is known as adaptive optics [17]. Adaptive optics has several
shortcomings: It requires an approximate point source, or guide star, to es-
timate the phase. This may be difficult to obtain, particularly for daylight



imaging. Wavefront compensation is imperfect due to factors like the finite
number of actuators in the mirror and the time lag between the detection
and compensation. Postprocessing, i.e., the application of image reconstruc-
tion algorithms implemented with computer software, is needed to further
enhance the image. This provides the motivation for this project.

2 Objectives

The original goal of this project was the development of fast, robust com-
putational algorithms for image reconstruction. For the US Air Force the
most notable application is identification and tracking of objects in earth
orbit using ground-based optical telescopes. Numerous other applications
occur in biomedical imaging. The relevant mathematical model was given
by equations (1)-(2), and the PSF s in (2) was assumed to be known. Dis-
crete versions of these equations, obtained by pixelization of the data and
applying numerical quadrature to the integral operator K, are notoriously
difficult to solve. They are typically quite large, e.g., a 128 x 128 pixel array
yields a system with tens of thousands of unknowns. As a consequence of
the ill-posedness of the underlying continuous equation, the discrete system
is also highly ill-conditioned. In practical terms, a small amount of noise in
the recorded image can cause enormous errors in the reconstructed image.
This ill-conditioning can be overcome by applying regularization. The PI is
an expert in regularization methods and their numerical implementation. His
initial contribution to this project was the application of a variety regular-
ization methods to problems in image reconstruction, and the development
and implementation of fast algorithms.

During a visit to a.US Air Force laboratory (the Starfire Optical Range,
Kirtland AFB, New Mexico), the PI became aware that the simple convo-
lution integral equation model (2) was incomplete. A key component of the
model, the PSF s, was typically not available. However, the PSF could
be determined from a physical quantity known as the phase, or wavefront
profile, ¢ in equation (3). The PI then expanded his goals to include the
development of fast, robust computational algorithms for phase estimation.
Phase estimation is important in its own right, having applications in laser
communications and laser weapons systems.




3 Major Accomplishments and New Findings

The PI’s initial focus was on the development and implementation of new reg-
ularization methods. A standard approach to the solution of (1) is Tikhonov
regularization [6], or penalized least squares, where one minimizes the func-
tional

J(f) = K f - dI + o(Lf, ). (4)
Here (f,g) = [ | f(z)g(z) dz denotes the L? inner product, the regularization
parameter o is a small and positive, and L is a symmetric positive semidefi-
nite linear diffusion operator, e.g., the negative Laplacian Lf = —uz; — Uyy.
A shortcoming of quadratic cost functionals like this is that they produce
smooth solutions. Images with sharp features have discontinuities and are
not smooth. See the object in Figure 1. A new approach to the removal of
noise from discontinuous images had recently been developed by Rudin and
Osher [15], based on total variation, abbreviated TV,

TV(f) = / / Ju + w2 dzdy. (5)

Since the TV functional is not quadratic, iterative solution methods must
be applied to the resulting Euler-Lagrange equations. Rudin and Osher
used explicit time marching, or equivalently, the steepest descent algorithm,
for TV denoising. Steepest descent is notoriously slow to converge for ill-
conditioned systems. Hence, it proved impractical for image deblurring. The
PI, together with a graduate student Mary Oman, developed an alternative
solution method that was dubbed lagged diffusivity fized point iteration [18].
For the minimization of the Tikhonov functional (4) with (Lf, f) replaced
by TV (f), this iteration takes the form

(K*K + aLpv(f*)) f**' = K*d, v=0,1,....

In [5], the PI and David Dobson proved that this iteration is globally con-
vergent (i.e., it converges no matter what initial guess is taken). The PI
and Oman [23] demonstrated that this method converges rapidly on realistic
simulated atmospheric imaging data similar to that shown in Figure 1. On
the theoretical side, Robert Acar and the PI have rigorously proved [1] that
TV-penalized least squares is indeed a regularization.

Experience of the PI and many others has shown that incorporating non-
negativity constraints can dramatically improve the quality of the recon-
structed images. Unfortunately, this can also dramatically increase compu-
tational cost. In [19] the PI implemented a rapidly convergent projected
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Newton algorithm for nonnegatively constrained, regularized image deblur-
ring. Also discussed in this paper was the efficient solution of large, struc-
tured linear systems which arise at each iteration of the projected Newton
algorithm. In a follow-up paper (8], Martin Hanke, James Nagy, and the
PI formulated a general class of efficient quasi-Newton techniques for image
deblurring.

The PI and a graduate student, Steve Hamilton, wrote a collection of
MATLAB codes which implemented a variety of regularization methods
for image deblurring. Included in this package are standard (quadratic)
Tikhonov regularization and (nonquadratic) TV regularization. The codes
allow for the incorporation of nonnegativity constraints.

Another goal was the development of robust, efficient computational tech-
niques to solve the linear systems arising from the linearization and discretiza-
tion of regularized inverse problems. As indicated above, these problems
typically are quite large. Hence, it is impractical to apply direct matrix de-
composition techniques. Instead, iterative methods like the conjugate gradi-
ent (CG) method are used. As a consequence of ill-posedness, these systems
tend to be somewhat ill-conditioned when the regularization parameter is
small. This means that CG convergence may be quite slow, and acceleration
techniques called preconditioners are needed. The key to effective precondi-
tioning is to make use of special structure.

The blurring operator K in (2) gives rise to matrix equations with block
Toeplitz-Toeplitz block structure, abbreviated BTTB. Circulant precondi-
tioners have been shown to be very effective for BTTB systems [2, 3]. Un-
fortunately, other matrices arising in image reconstruction often do not have
BTTB structure. This is the case when total variation regularization is used.
It is also the case when the blurring process is not spatially translation invari-
ant. The PI and Martin Hanke developed and analyzed a class of multilevel
preconditioners that require only that K be a compact linear operator [9, 22].
Compact operators arise not only in image reconstruction, but also in a va-
riety of other important inverse problems. Follow-up work has been carried
out by Kyle Riley [12, 11, 13], a PhD student of the PI’s.

As indicated above, the model (2) is often incomplete in the sense that
the PSF s is unknown. A variety of approaches have been taken to overcome
this difficulty. With multiframe blind deconvolution [16], a time-varying se-
quence of images is captured. It is assumed that the PSF s varies with time,
but the object f remains constant from frame to frame. An alternative ap-
proach is multichannel phase diversity [7]: Here the model (3) for the PSF
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is assumed, with ¢ representing the phase, or wavefront aberration. Addi-
tional information about the phase is obtained by using beam splitters and
imposing known phase perturbations and then capturing additional images.
Figure 2 illustrates a 2-channel phase diversity setup, while the bottom sub-
plots in Figure 1 show simulated phase diversity image data. The PSF’s in
the M-channel setting take the form

smld] = |.7-"_1 (Aei(¢+9’”))|2, m=1,..., M,

where the 6,,’s denote the known phase perturbations. Given data d, =
Sm|®] % f +1Tm, m=1,..., M where s f denotes the convolution integral in
equation (2) and 7, denotes error, the goal is to estimate both the object f
and the phase ¢.

Conventional Phase-Diversity Imaging

unknown wnknovwm ,
ohject twbulence beam splitter

/ focal-plane

- Image

known
| defocus

Figure 2: A Simplified Illustration of the Experimental Setup for 2-Channel Phase
Diversity Imaging.

An optimization-based scheme for the joint estimation of object and phase
was presented by Paxman et al in [10]. The PI and his co-workers (Robert
Plemmons of Wake Forest University, Tony Chan of UCLA, and Brent Eller-
broek of the Starfire Optical Range) have made a number of refinements to
this scheme. In [20] object and phase regularization terms were incorporated
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in a penalized least squares framework. The phase penalty term made use of
the covariance structure of the stochastic process used to model atmospheric
turbulence. In [24] the PI implemented a limited memory BFGS scheme
for the robust, efficient solution of the penalized least squares minimization
problem. The PI together with Ellerbroek wrote a package in the MATLAB
programming environment for the simulation of noisy, blurred atmospheric
image data, and the inversion of this data to obtain the object and atmo-
spheric phase profiles. The inversion codes allow for either single or multiple
time frames and either single or multiple phase diversity channels. Robert
Plemmons and his colleagues have translated these MATLAB codes into
FORTRAN [4], and the codes are running on an IBM SP2 supercomputer at
the Air Force’s Maui High Performance Computing Center (MHPCC). The
algorithms and codes will soon be tested with real atmospheric image data
obtained at the Air Force Maui Optical Station (AMOS).
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Presentations

e Oct. 9-11, 1996, Coeur d’Alene, Idaho. Second SIAM Conference on

Sparse Matrices, Attended and gave a Contributed Long Presentation
entitled “Sparse matrix equations arising in parameter identification”.

e Oct. 16-17, 1996. Phillips Laboratory, Kirtland AFB, New Mexico.

Attended AirBorne Laser (ABL) Workshop.

e March 10-12, 1997. Hong Kong, China. Workshop on Scientific Com-

puting ’97. Attended and gave Invited Talk entitled “Solution of linear
systems arising in nonlinear image deblurring”.

e March 14, 1997. Beijing, China. Workshop on Optimization and Nu-

merical Methods. Attended and gave Invited Lecture entitled “Com-
putational Methods for Inverse Problems”.
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June 16-19, 1997. Albuquerque, New Mexico. Fourth SIAM Confer-
ence on Mathematical and Computational Issues in the Geosciences.
Attended.

Oct. 11, 1997. UCLA Department of Mathematics. Gave colloquium
talk entitled “Phase diversity based deconvolution and phase retrieval”.

Oct. 12-17, 1997. Long Beach, California. Annual Meeting of the
Optical Society of America. Attended.

Oct. 29-Nov. 1, 1997. Snowbird, Utah. Sixth SIAM Conference on Ap-
plied Linear Algebra. Attended and gave minisymposium presentation
entitled “Numerical linear algebra and constrained deconvolution”.

March 23-28, 1998. Kona, Hawaii. SPIE International Symposium on
Astronomical Telescopes and Instrumentation. Attended and presented
contributed paper entitled “Fast algorithms for phase diversity based
blind deconvolution”.

July 5-9, 1998. Mount Holyoke College, South Hadley, Massachusetts.
AMS-SIAM-IMS Joint Summer Research Conference on Mathematical
Methods in Inverse Problems for Partial Differential Equations. At-
tended and gave invited talk entitled “Phase diversity based deconvo-
lution and phase retrieval”.

July 20-22, 1998. Wright Patterson AFB, Ohio. AFOSR Grantee’s
Meeting. Attended.

July 23-24, 1998. San Diego, CA. SPIE International Symposium on
Optical Science, Engineering, and Instrumentation. Attended and pre-
sented contributed paper entitled “Preconditioners for linear systems
arising in image reconstruction”.

Aug. 12-14, 1998. Copenhagen, Denmark. Keynote Speaker at the In-
terdisciplinary Inversion Conference. Talk title “Phase diversity based
inversion in atmospheric imaging”.

Oct. 4-7, 1998. Baltimore, Maryland. Annual Meeting of the Optical
Society of America. Attended and presented contributed paper entitled
“Two-level preconditioners for regularized inverse problems”.
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Oct. 8-11, 1998. Winnipeg, Canada. International Conference on Op-
erator Theory and Its Applications to Scientific and Industrial Prob-
lems. Attended and presented contributed paper entitled “Phase di-
versity based simultaneous deconvolution and phase retrieval”.

Jan. 8-9, 1999. Wake Forest, North Carolina. Conference on Lin-
ear Algebra: Theory, Applications, and Computations. Attended and
presented invited paper entitled “Computational issues arising in at-
mospheric imaging”.

Feb. 24-26, 1999. Santa Fe, New Mexico. 1999 IEEE Information
Theory Workshop on Detection, Estimation, Classification, and Imag-
ing. Attended and presented invited paper entitled “Nonlinear inverse
problems in atmospheric imaging”.

July 5-9, 1999. Edinburgh, Scotland. 1999 International Conference
on Industrial and Applied Mathematics. At the minisymposium on
Inverse Problems, presented invited paper entitled “Inverse problems
in atmospheric optics”. At the minisymposium on Computational As-
pects of Distributed Parameter Estimation in Applications Involving
PDE’s, presented invited paper entitled “Multilevel preconditioners for
regularized inverse problems”.

Sept. 26-30, 1999. Santa Clara, California. Annual Meeting of the Op-
tical Society of America. Attended and presented contributed paper
entitled “Fast algorithms for nonnegatively constrained image deblur-
ring”.

Collaborative Research and Transactions at
US Air Force Laboratories

During the course of this project, the PI visited the Starfire Optical Range
(SOR) at Kirtland AFB, New Mexico, four times. His contacts at the SOR
were Dr. Brent Ellerbroek and Dr. Julian Christou. The first visit occurred
in June 1997. The PI gave an informal lecture on computational deblurring
(i.e., two-dimensional deconvolution) algorithms and demonstrated some de-
blurring software. At that time, the PI's goal was to supply the Air Force
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with robust, efficient software to improve the resolution of ground-based tele-
scopes used to identify and track objects in earth orbit. In discussions with
Ellerbroek and Christou, the PI became aware that the telescope image data
available was not enough to apply his algorithms. A key piece of informa-
tion, the point spread function (PSF) s in model equation (2), was simply
not available.

As a result of this first visit, the PI expanded his research goals to include
the estimation of the PSF as well as true image from the recorded (noisy,
blurred) image data. An examination of mathematical models for image for-
mation and a search of the literature revealed that a technique known as
phase diversity could be used to estimate a quantity known as the phase
(which yields the PSF) together with the true image. The PD’s next several
visits to the SOR dealt with light propagation through the atmosphere and
phase diversity. The PI began a collaboration with Dr. Ellerbroek which
resulted in a MATLAB software package to simulate image formation in at-
mospheric optics. The PI also wrote MATLAB codes for the estimation of
the phase and the true image from phase diversity image data. One the PI's
academic research collaborators, Professor Robert Plemmons of Wake For-
est University, has since translated these codes into FORTRAN and imple-
mented them on a supercomputer at the Air Force’s Maui High Performance
Computing Center.

8 Inventions or Patent Disclosures

None. This project dealt with the development of computational algorithms
and computer software. These have been made available to the Air Force
and to the general public.

9 Summary

This project dealt with the development and computer implementation of
fast, robust algorithms for atmospheric image deblurring. Specific accom-
plishments include

e The development of new computational algorithms for total variation
and nonnegatively constrained image deblurring.

16




e The development and analysis of new multilevel preconditioners for the
fast solution of linear systems arising in regularized, linearized inverse
problems.

e The application of penalized least squares regularization methods for
the joint estimation of object and phase (wavefront profile) from mul-
tiframe and multichannel phase diversity image data.

e The development of two software packages. One package is a collec-
tion of MATLAB routines for image deblurring. The second consists of
MATLAB codes for the simulation and inversion of atmospheric phase
and image data. The second package has been translated into FOR-
TRAN and implemented on supercomputers at the Air Force’s Maui
High Performance Computing Center.

Preprints and reprints of papers prepared under this project and computer
software prepared under this project can be downloaded directly from the
PI’s web site at

http://www.math.montana.edu/"vogel/

To get the papers, click on Publications. To get the software, click on
Software.

A PhD thesis was written by Kyle Riley, a student directed by the PI
and supported under this project. This thesis can also be downloaded from
the PI’s web site under Publications.
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